Sejarah Geometri non Euclid


Sejarah Geometri Non Euclid
Non-Euclidean geometri adalah salah satu dari dua geometri tertentu yang, longgar berbicara, diperoleh dengan meniadakan Euclidean paralel postulat , yaitu hiperbolik dan geometri eliptik . Ini adalah satu istilah yang, untuk alasan sejarah, memiliki arti dalam matematika yang jauh lebih sempit dari yang terlihat untuk memiliki dalam bahasa Inggris umum. Ada banyak sekali geometri yang tidak geometri Euclidean , tetapi hanya dua yang disebut sebagai non-Euclidean geometri.
Perbedaan penting antara geometri Euclidean dan non-Euclidean adalah sifat paralel baris. Euclid ‘s kelima mendalilkan, yang paralel mendalilkan , setara dengan yang Playfair postulat yang menyatakan bahwa, dalam bidang dua dimensi, untuk setiap garis yang diketahui dan A titik, yang tidak pada ℓ, ada tepat satu garis melalui A yang tidak berpotongan ℓ. Dalam geometri hiperbolik, sebaliknya, ada tak terhingga banyak baris melalui A ℓ tidak berpotongan, sementara dalam geometri eliptik, setiap baris melalui A memotong (lihat entri pada geometri hiperbolik , geometri berbentuk bulat panjang , dan geometri mutlak untuk informasi lebih lanjut).
Cara lain untuk menggambarkan perbedaan antara geometri adalah mempertimbangkan dua garis lurus tanpa batas waktu diperpanjang dalam bidang dua dimensi yang baik tegak lurus ke saluran ketiga:
  • Dalam geometri Euclidean garis tetap konstan jarak dari satu sama lain bahkan jika diperpanjang hingga tak terbatas, dan dikenal sebagai paralel.
  • Dalam geometri hiperbolik mereka “kurva pergi” satu sama lain, peningkatan jarak sebagai salah satu bergerak lebih jauh dari titik persimpangan dengan tegak lurus umum, garis-garis ini sering disebut ultraparallels.
  • Dalam geometri berbentuk bulat panjang garis “kurva ke arah” satu sama lain dan akhirnya berpotongan.
Sejarah
Sejarah awal
Sementara geometri Euclidean , dinamai matematikawan Yunani Euclid , termasuk beberapa dari matematika tertua, non-Euclidean geometri tidak secara luas diterima sebagai sah sampai abad ke-19.
Perdebatan yang akhirnya menyebabkan penemuan non-Euclidean geometri mulai segera setelah karya Euclid ‘s Elemen ditulis. Dalam Elemen, Euclid dimulai dengan sejumlah asumsi (23 definisi, lima pengertian umum, dan lima postulat) dan berusaha untuk membuktikan semua hasil lain ( proposisi ) dalam pekerjaan. Yang paling terkenal dari postulat sering disebut sebagai “Kelima Postulat Euclid,” atau cukup dengan ” paralel mendalilkan “, yang dalam formulasi asli Euclid adalah :
Jika garis lurus jatuh pada dua garis lurus sedemikian rupa sehingga sudut interior pada sisi yang sama bersama-sama kurang dari dua sudut yang tepat, maka garis-garis lurus, jika diproduksi tanpa batas waktu, bertemu di sisi itu yang adalah sudut kurang dari dua kanan sudut.
Lain yang hebat matematika telah menemukan bentuk-bentuk sederhana dari properti ini (lihat postulat paralel untuk laporan setara). Terlepas dari bentuk dalil, bagaimanapun, secara konsisten tampaknya lebih rumit dari yang lain Euclid postulat (termasuk, misalnya, “Antara dua titik garis lurus bisa diambil”).
Setidaknya seribu tahun, geometers merasa kesulitan akibat kompleksitas yang berbeda dari kelima postulat, dan percaya itu bisa dibuktikan sebagai teorema dari keempat lainnya. Banyak berusaha untuk menemukan bukti oleh kontradiksi , termasuk matematikawan Arab Ibn al-Haytham (Alhazen, abad ke-11), dengan Persia matematikawan Umar Khayyām (abad 12) dan Nasir al-Din al-Tusi (abad ke-13), dan dengan Italia matematika Giovanni Girolamo Saccheri (abad 18).
Teorema Ibn al-Haytham, Khayyam dan al-Tusi pada segiempat , termasuk segiempat Lambert dan Saccheri segiempat , adalah “teorema pertama dari hiperbolik dan geometri berbentuk bulat panjang . ” Teorema-teorema bersama dengan alternatif mereka mendalilkan, seperti aksioma Playfair ‘s , memainkan peran penting dalam perkembangan selanjutnya dari non-Euclidean geometri. Upaya-upaya awal pada menantang kelima postulat memiliki pengaruh yang besar terhadap pembangunan di antara geometers kemudian Eropa, termasuk Witelo , Levi ben Gerson , Alfonso , John Wallis dan Saccheri. Semua upaya awal dibuat di mencoba untuk merumuskan non-Euclidean Namun geometri diberikan bukti cacat dari paralel mendalilkan, mengandung asumsi yang pada dasarnya setara dengan postulat paralel. Upaya-upaya awal itu, bagaimanapun, memberikan beberapa sifat awal dari geometri hiperbolik dan eliptik.
Khayyam, misalnya, mencoba untuk mendapatkan dari setara mendalilkan ia merumuskan dari “prinsip-prinsip Bertuah” ( Aristoteles ): “Dua garis lurus berpotongan konvergen dan tidak mungkin untuk dua garis lurus konvergen menyimpang ke arah di mana mereka bertemu. ” Khayyam kemudian dianggap sebagai tiga kasus yang tepat, tumpul, dan akut yang sudut puncak dari sebuah segiempat Saccheri dapat mengambil dan setelah membuktikan sejumlah teorema tentang mereka, ia benar membantah kasus tumpul dan akut berdasarkan dalil nya dan karena berasal klasik postulat Euclid yang tidak disadarinya adalah setara dengan postulat sendiri. Contoh lain adalah anak al-Tusi, Sadr al-Din (kadang-kadang dikenal sebagai “Pseudo-Tusi”), yang menulis sebuah buku tentang subjek di 1298, berdasarkan pengalaman kemudian al-Tusi, yang disajikan lain setara hipotesis untuk paralel dalil . “Dia pada dasarnya revisi kedua sistem Euclidean aksioma dan dalil-dalil dan bukti-bukti proposisi banyak dari Elemen.” Karyanya diterbitkan di Roma tahun 1594 dan dipelajari oleh geometers Eropa, termasuk Saccheri  yang mengkritik pekerjaan ini serta yang dari Wallis.
Giordano Vitale , dalam bukunya Euclide restituo (1680, 1686), menggunakan Saccheri segiempat untuk membuktikan bahwa jika tiga poin adalah jarak yang sama di pangkalan AB dan CD KTT, maka AB dan CD di mana-mana berjarak sama.
Dalam sebuah karya berjudul Euclides ab Omni Naevo Vindicatus (Euclid Dibebaskan dari Semua Cacat), yang diterbitkan tahun 1733, Saccheri geometri eliptik cepat dibuang sebagai kemungkinan (beberapa orang lain dari aksioma Euclid harus dimodifikasi untuk geometri berbentuk bulat panjang untuk bekerja) dan mulai bekerja membuktikan besar jumlah hasil dalam geometri hiperbolik. Dia akhirnya mencapai titik di mana ia percaya bahwa hasil menunjukkan ketidakmungkinan geometri hiperbolik. Klaimnya tampaknya telah didasarkan pada pengandaian Euclidean, karena tidak ada kontradiksi logis hadir. Dalam upaya untuk membuktikan geometri Euclidean ia malah tidak sengaja menemukan sebuah geometri baru yang layak, tapi tidak menyadarinya.
Pada 1766 Johann Lambert menulis, tetapi tidak mempublikasikan, Theorie der Parallellinien di mana ia mencoba, sebagai Saccheri lakukan, untuk membuktikan postulat kelima. Dia bekerja dengan angka yang hari ini kita sebut segiempat Lambert, suatu segiempat dengan tiga sudut kanan (dapat dianggap setengah dari segiempat Saccheri). Dia segera menghilangkan kemungkinan bahwa sudut keempat adalah tumpul, karena memiliki Saccheri dan Khayyam, dan kemudian melanjutkan untuk membuktikan teorema banyak berdasarkan asumsi sudut akut. Tidak seperti Saccheri, ia tidak pernah merasa bahwa ia telah mencapai kontradiksi dengan asumsi ini. Dia telah membuktikan hasil non-Euclidean bahwa jumlah sudut dalam segitiga meningkat sebagai luas segitiga berkurang, dan ini menyebabkan dia untuk berspekulasi mengenai kemungkinan model kasus akut pada bola berjari-jari imajiner. Dia tidak membawa ide ini lebih jauh.
Pada saat ini itu sangat percaya bahwa alam semesta bekerja menurut prinsip-prinsip geometri Euclidean.


Soal:
1.Apa perbedaan geometri euclid dengan geometri non euclid?
2.Apa yang dimaksud dengan Euclidan Paralel Postulat?
3.Apa teorema ibn al-haytham, khayyam dan al-tusi tentang segi empat?
4.Diman dan pada tahun keberapa karya al-tusi,sadr al-din di terbitkan?
5.Siapa pengarang buku euclide restitou?

Tidak ada komentar:

Posting Komentar